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SVD: Basics 
Simply put, the Singular Value 
Decomposition allows us to rewrite a 
matrix as eigenvalues and eigenvectors. 
We can then use the SVD to compress 
data by figuring out which data parts are 
important and which are not. Eigenvectors 
associated with larger eigenvalues are 
more important than those with lower 
eigenvalues.  
 

SVD on an Image 
To help better understand how the SVD 
works, let's observe how we can use the 
SVD to compress the following image. 
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Original Image

 
   One Singular Value-Two Singular Values 

 
Five Singular Values-Ten Singular Values 
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60 Singular Values-100 Singular Values 

 
As we increase the number of singular 
values used, the details of the image start 
to take form. After using the 10 most 
significant singular values, we can see the 
general form of the image. This image 
takes 96% less storage space. 

What data? 
Matrices can be used to describe the 
relationship between two things.  
 
Let’s say we (the authors) and a friend 
rank our top 5 ice cream flavors, with 5 
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being our favorite and 1 being our least 
favorite. We could express this in a matrix:  

 
Streaming services like Spotify can make 
huge matrices like this. For example, 
Spotify may take a look at what percent 
of a song you listened to before stopping 
to find out what keeps your attention. 
Imagine a matrix of every user and song 
on Spotify! There’s a reason we often 
leave data analysis to the computers. 
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What is the SVD? 
Mathematically speaking, the SVD is a 
way of decomposing ​any​ matrix into the 
sum of eigenvalues and eigenvectors. 
When we have a symmetric matrix, this is 
very easy. Symmetric matrices can easily 
be decomposed into the following form: 

 
This is called eigendecomposition. 
It can also be written as three matrices 
multiplied together: 
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The multiplication of these matrices is the 
same as our decomposition above! 
When we do the SVD, we are essentially 
performing the same function on a 
non-symmetric ​ matrix. So, our 
decomposed equation looks a little 
different: 

 
In the SVD: Math section, we’ll talk about 
the specifics of deriving this equation, 
including what ​w​ and ​v​ represent. 
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Why do we want to do it? 
Decomposing a matrix into this equation 
is more intuitive to us as mathematicians. 
But more importantly, we can order the 
terms by magnitude: from the biggest 
numbers to the smallest ones. This means 
that we can see ​patterns​ and​ relationships 
in data. It also means that if we take a 
large amount of data, like a photo, and run 
SVD analysis on it, we can eliminate the 
least important terms and ​compress ​data. 
 
 
 
 
 
 
 

9 



 

SVD: Math 
Earlier, we told you that the SVD is just 
about decomposing any matrix into the 
form: 

 
But how and why do we do that? 
When we have a symmetric matrix A, we 
can decompose it easily. But when we 
have a non-symmetric matrix, it’s a little 
harder. 
Here’s the trick: You can make a 
symmetric matrix by multiplying A by its 
transpose! 
However, the order you multiply matrices 
in matters. We have to have a statement 
that holds true for both A​T​A and AA​T​. This 
is why we have two different terms: ​v​ and 
w ​. All ​v​ are the eigenvectors of A​T​A and all 
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w ​ are the eigenvectors of AA​T​. 
Meanwhile, A​T​A and AA​T​ have the same 
eigenvalues. 
Rewriting the decomposition equation as 
matrices will provide insight: 

 
These matrices are also written as UΣV​T​. 
(Σ is capital Sigma). 
How do we prove that this decomposition 
of A considers both forms of 
symmetrizing? 
Let’s start by rewriting A and A​T​ in terms 
of  UΣV​T​. 
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Since Σ is diagonal, its transpose has the 
same values as the original--though it may 
have extra 0’s if it’s not square. Now, let’s 
multiply: 

 
U​T​U forms the identity matrix, so it 
doesn’t affect the end result. 

Since Σ is full of the singular values √λ, 
multiplying it by itself gives us the 
diagonal matrix of λ. 
Therefore: 
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Which is a symmetric eigendecomposition! 
You can trust us in saying that AA​T​ yields 
the decomposition for eigenvectors ​w​, but 
here’s a short run-through just to prove it: 

 
So once again, our singular value 
decomposition of the non-symmetric 
matrix A is proven true as it yields the 
eigendecomposition of AA​T​. 
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SVD: 
Implementation 

Wow, that is a lot of math. Why would I 
ever want to do that? Well short answer, 
you don’t. 
 
Now that you understand some of the 
logic behind it, we can just use computers 
to do the work. 
 
To start off with, here is how we find the 
Singular Value Decomposition using 
different tools. 
 
You can download the sample code here: 
https://github.com/mstites/Linearity-Zine 
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Matlab 
Learn how to use the SVD in MATLAB. 
A = [​1​ ​2​ ​3​; ​4​ ​5​ ​6​] 
[U,S,V] = svd(A) 

 

U = 

 

   ​-0.3863​   ​-0.9224 
   ​-0.9224 0.3863 

S = 

 

9.5080 0 0 

 0 0.7729 0 

V = 

 

   ​-0.4287 0.8060 0.4082 

   ​-0.5663 0.1124​   ​-0.8165 
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   ​-0.7039​   ​-0.5812 0.4082 

This performs the SVD on matrix A, such 
that USV​’​=A. We can do this in MATLAB 
with the following command:  

U*S*V' 

 

ans​ = 
 

1.0000 2.0000 3.0000 

4.0000 5.0000 6.0000 

 

Matlab - On Image 
Now, let’s learn how to use the SVD on an 
image. 

img = imread(​'cat.jpg'​);  
img_double = im2double(img); 
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Opens the file and converts it to double 
precision. 
 

[U,S,V] = svd(img_double);  

Performs the SVD on the image matrix. 
 

rank = ​10​;  
L = U(:,​1​:rank) * S(​1​:rank, 
1​:rank) * V(:, ​1​:rank)';  

Chooses the first 10 singular vectors from 
the SVD breakdown. 
 

colormap(​'gray'​)  
 

subplot(​211​) 
imagesc(img) ​% original 
image 
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subplot(​212​) 
imagesc(L) ​% compressed 
image 

Displays both the original image and the 
compressed image. 

 
Want to experiment? By changing the 
rank number, you can determine how 

18 



 
many terms you’re taking in the 
compression. How many singular values do 
you need to get an image that looks like 
the original? How few do you need to tell 
it’s a cat? You can also insert and 
compress your own images. If you 
download the image, you can see how 
much data is saved as well. 
 
 
 
 
 
 
 
 

19 



 

Python 
Quick info: Python is free and easy to 
install, download here: 
https://www.anaconda.com/distribution/  
 
Once you have python installed, use your 
favorite text editor (IE Atom) to create 
some Python scripts. Alternatively, you 
can use Jupyter notebooks (which should 
install with Anaconda). 
 

import imageio 

import​ numpy ​as​ np 
from​ numpy ​import​ ndarray 

We will be using NumPy, a package 
installed by default, for our matrix 
operations. ImageIo is used for opening an 
image. 
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img = Image.open(​'cat.jpg'​) 
img_m = np.asarray(img, 

dtype=​"int32"​) 

Opens the grayscale image “cat.jpg” and 
create a matrix to represent it. 
 

U, S, V = 

np.linalg.svd(img_m, 

full_matrices = ​True​) 

Performs the SVD on the image matrix. 
 

u_size = np.shape(U) 

s_size = np.shape(S) 

v_size = np.shape(V) 

print(​'U is:'​, u_size, ​'\nS 
is:'​,s_size, ​'\nV is:'​, 
v_size) 

U ​is​: (​706​, ​706​)  
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S ​is​: (​480​, ​480​)  
V ​is​: (​480​, ​480​) 

Checks the size of the matrices. 
To multiply U, S, and V together we need 
S to be (706, 480). We could also change 
the size of U, but this is more challenging 
so we are opting for the simple solution. 
 

S_new = np.zeros((​706​, ​480​)) 
S_new[:​480​, :​480​] = S 

Adds zeros to the extra rows. 
 

a = U @ S_new @ V 

np.isclose(a, img_m) 

Multiplies U, S, and V together. It uses the 
isclose command to check that a is 
equivalent (ignoring floating point 
precision errors) to our original image 
matrix. 
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Challenge: The above code only breaks 
down a matrix into the SVD, it does not 
compress it. Write a program to compress 
data using the SVD in Python. 
 

Wolframalpha 
Getting the Singular Value Decomposition 
for a matrix is very simple in 
WolframAlpha, just use the SVD 
command.  
 
For example: “SVD {{1,0,-1},{-2,1,4}}”. 
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For further resources and questions, make 
sure to check out our website: 
www.mstites.com/Linearity-Zine/ 
Thank you so much for reading! 
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